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Abstract 

We study the b-completion of the three Friedmann models of the Universe, having as models 
for 3-space the sphere, the Euclidean space or the hyperbolic space. We show that in the first case 
there is just one singularity, having the full completion as only neighborhood. In the other two cases 
there is one essential singularity, which is the limit of all past causal geodesics; again, it has a single 
neighborhood. This extends results by Bosshard [On the b-boundary of the closed Friendmann 
Model, Commun. Math. Phys. 46 (1976) 263-2681 and Johnson [The bundle boundary in some 
special cases, J. Math. Phys. 18 (5) (1977) 898-9021 on the closed Friedmann model. 0 1999 
Elsevier Science B.V. All rights reserved. 
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1. Introduction 

We briefly recall Schmidt’s definition of the b-completion of a connected-oriented and 
time-oriented spacetime (see [2,3,8] for general results). Let rr : P -_) M be the sub- 
bundle of the frame bundle given by the orthonormal positive frames (uo, ut , . . . , u,), 
dim(M) = n + 1, uo being timelike future. The structure group is IL, the group of Lorentz 
transformations of OX’+’ preserving the natural orientation and time orientation. Let 4 and 
w be the fundamental form and the connection form (of the Levi-Civita connection), defined 
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on P with values in LQn+’ and g 1 (n + 1; R), respectively. We have on P a Riemann metric 

determinedby G(X, X) = ]I@(X)]12+ I]w(X)]]~, where ]] . II is either the Euclidean norm on 
[Wn+l or the norm ](a II2 = tr(aaT) in g 1 (n + 1; R). Let d be the distance on P associated to 
G and let (F ,a) be the Cauchy completion of the metric space (P,d). The right action of L on 
P can be extended to p, and the quotient space A = k/G is defined as the b-completion 
of (M, g). The set of singularities or b-boundary is fi - M. Since the distance 2 on p and 
the projection 72 : @ --f k extend d and n, we will often just write d and n. 

A b-incomplete curve c : [0, a) --+ M is a smooth curve without limit as t -+ a, having 
a finite length horizontal lift C for the metric G. It follows that C has a limit p E F and that 
n(p) E &? - M. We say then that c induces n(p). It can be proved [4, Proposition 8.3.11 
that any singularity can be obtained in this way. 

Consider the following spacetime (M, g) where: 
- M = I x N, I = (0, Z), I 5 00, N = .S3, R3 or W3 (hyperbolic space). 
- h is the standard Riemann metric on N. 
- g = - dt2 + f2h, where f : (0, I) + R is the maximal solution of (f2 + C)f = 2k 

(Friedman equation), such that lim,,o f(t) = 0 for the following choices of C: C = 0 
ifN=R3;C=1ifN=~3;C=-1ifN=W3.Alwaysk>0. 
The three spacetimes just defined are the Friedmann spaces, the closed one corresponding 

to N = s3. The Friedmann sulfates are the two-dimensional analogs taking N = R or 
s1 with the same f. If c(t) = (x(t), y(t)) is a b-incomplete curve such that x(tn) + 0 
for some t,, + a = sup(dom(c)), we say that the singularity induced is a (past) essential 
singularity. Since the function f in the closed space is defined on (0,2nk) and is symmetric 
in the sense that f (nk - t) = f (nk + t), we could define in this case a future essential 
singularity, changing to the condition x(tn) -+ 2nk for some t,, --+ a. 

The following results are known ([ 151): 
- The closed Friedmann surface has just one essential (past) singularity, whose only neigh- 

borhood contains the space. 
- There is at least one essential singularity in the closed Friedmann space such that its 

neighborhoods contain the space. 
- Some past and future essential singularities in the Friedmann closed space actually 

coincide. 
We improve these results as follows 

- The closed Friedmann space has just one singularity (of any kind, essential or not) with 
the whole completion as only neighborhood. (It was conjectured in [5] that there was 
only one past essential singularity.) 

- The nonclosed Friedman spaces have a unique past essential singularity; its neighbor- 
hoods contain the space. 

- In nonclosed Friedman spaces, causal future maximal geodesics have horizontal lifts with 
infinite length. Therefore, they are not b-incomplete and do not seem to induce (even in 
a loose sense) any “future singularity”. 
When the papers of Bosshard and Johnson appeared, the trivial convergence of any 

curve to a singularity, plus the coincidence of Big Bang and Big Crunch singularities were 
considered undesirable features of the b-completion. Still, there could exist some undetected 
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(i.e. different from the essential) singularities in the closed model, not so badly behaved. 
Also, it could happen that the situation improved in the nonclosed models. Our paper shows 
that this is not the case, and that the drawbacks of the definition of b-completion appear in 
all examples of the Friedmann space. 

The paper is structured as follows. In Section 2 we study some properties of null geodesics; 
in Section 3 we give formulas for parallel fields along certain curves, allowing us to construct 
horizontal lifts and compute its length in Section 4. We work up to this point in a spacetime 
which is more general than the Friedmann spaces. In Section 5 we choose N = R3, s3 or 
W3, and define, via a special global frame, a section c of n, whose properties will give us 
information on the structure of @ - P. In Section 6 we work with the Friedmann models 
obtaining the main theorems. There are important ideas in the general structure of the proof 
which are traceable to the paper of Johnson. 

2. Some properties of null geodesics 

Let I = (0, I) be an interval, 1 5 00 and f : I + R a strictly positive smooth map 
such that f(x) + 0 and f(x) + 0. We denote by U the natural field a/at. The function 
p = U . f/f = f/f will often appear in the paper. We choose an oriented, complete 
and connected Riemann n-dimensional manifold (N, h) and consider the warped product 
metric on M = I x N with formula g = -dt C~I dt + f 2h. (See [7] as a reference for 
warped products.) 

The fields U E X(Z), X, Y E X(N) will be identified with fields in X(M). If D is 
the Levi-Civita connection of (N, h) we have the following formulas for the Levi-Civita 
connection V of (M, g) 

vuu = 0, vux = vxu = VOX, VxY = Dxy + q&X, Y>U. 

We denote by X(y) the space of fields along the curve y. Let c = (x, y) be a curve in M; 
therefore x : J + Iw, y : J + N. A field V along c can be represented in the form V = 
r(Uoc)+K,withr : J + R, K E X(y).ThecovariantderivativeofVVofVisgivenby 

VV = (i’ + (q 0 x)&j, K))(U 0 cl 

+(DK + (~0 0 x)(iK + rj>). (2.1) 

It is clear then that V is parallel if the following equations hold: 

+ + (q 0 x)&y, K) = 0, (2.2a) 

DK + (q~ o x)(fK + r$) = 0. (2.2b) 

In particular, if V = ~2, we have r = 1, K = j. Hence, c is a geodesic if 

i + (P 0 x)&j, j) = 0, (2.3a) 

Dj, + (IQ o x)(2ij) = 0. (2.3b) 

We are interested in null geodesics, which can be obtained by quadratures. 
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Theorem 2.1. Let c : [0, t) += M be a null geodesic. Then, 

i* = g(jl, jl>, 

(f 0 x)i = k(constant), 

and x is given by 

x(t) 

kt = 
s 

f (C)dC. 

0) 

(2.4a) 

(2.4b) 

(2.5) 

Moreovel; ifwe reparameterize y to ~1, say y = y1 o s, with S > 0, E = sign(i) = fl and 
h(jl, $1) = 1, then yl is a geodesic of (N, h) and s is given by 

x(t) 

s(t) -s(O) = 
s 

&de - 

x(0) f(C)’ 

(2.6) 

ProoJ: Clearly k = i (U o c) + i, and it will be null if and only if (2.4a) holds. Substituting 
(2.4a) in (2.3a) we get, since q = f/f, that (f OX)~ + (f ox)k2 = 0; but this is just (2.4b). 
If we integrate (2.4b) we get 

t n(t) 

kt = 
s 

(f ox(U))i(U)du = 
s 

f (6) d6. 
0 x (0) 

Since the derivative of [[ f (6) dl is f(x) > 0, x is well determined by the integral. 
Condition (2.3b) implies that y is a pregeodesic for D; hence if reparametrized to yt it will 
give a geodesic of D. We have, using (2.4a), 

f2 = g(jJ, 9) = s*g(p, 0 s, $1 0 s) 

= S* f *(x)h(jq o s, jq o s) = S* f *(x). 

Now, since (i ) * ‘/* = lk 1 = &.i and S f > 0, we get (2.6) by integration. 0 

Theorem 2.2. Let c = (x, y) : [0, ) t -+ M be a maximal null geodesic. Then x(t) con 
verges to one of the endpoints of I as t + t. Zf f(0) = -1, 

(2.7) 

Proo$ First of all, x has a limit (fork is never 0); suppose it were not 0 or 1; then by (2.6), 
r would have a finite limit as t + t. By completeness, yt is defined on R, implying that y 
has a limit too. We have shown that c has a limit, contrdicting maximality. Formula (2.7) 
follows (2.4b) and (2.5) taking limit as t + t. 0 
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Theorem 2.3. Let y : [0, t) + N such that Dj = 0, h(jt, j) = 1. Then the curve in M, 
c(t) = (x(t), y(t)) is a nullpregeodesic ifi* = (f 0 x)*; infact, ifk = Ef 0 x, 6 = fl, 
we have Vd = 2~(f o x)d and jt = e(f o x)k = (f o x)(f o x). Moreovel; ifc is a 
reparameterization of a maximal null past geodesic then 

x(O) s dt t= - 
o fW F O”. (2.8) 

P~OOJ Since c = k(~ o c) + j, g(?, 2) = 0 implies f* = (f o x)*; hence f = of 0 x and 
;t: = (f o x)(f OX). Now, by (2.1) and (2.3a,b) 

vk = [jl + (q o x)(f 0 x)*h(j, j)lW’ 0 c) 
+[Dj, + 2(q 0 x)-+jil 

= 2(f 0 x)(f 0 x)(U 0 c) + 2E(f 0 x>g 

= 2E(f 0 x)[k(U 0 c) + j] = 2E(f 0 x)?. 

Formula (2.8) follows by integration of k/f o x = -1, taking limits as t + r, since, by 

Theorem 2.2, x(t) + 0 as t + t . 0 

3. Parallel fields 

We compute in the lemmas in this section the expression of the most general 
field V along certain particular curves c = (x, y) : .I + M. 

parallel 

Lemma 3.1. Forfied (a, b) E M dejke c(t) = (a - t, b), t E [0, a). Then 

f(a) 
V(t) = X(U 0 c>(t) + f(a _ g? 

where X E Rand t E TbN. 

Proo$ Just apply Eqs. (2.2a) and (2.2b) to r = X (constant) and K(t) = (f(a)/f(a - t))e, 
which is a field along the constant curve y = b. 0 

Lemma 3.2. Let c = (x, y) : J + M be a curve such that y is a D-geodesic in N with 
h(j, j) = 1. Then 

P 
V=(XochO+Yosh8)Uoc+(Xash8+Y,-,ch8)~+- 

f fox’ ox 

where X0, YO E R, P E X(y) such that h(jt, P) = 0 and DP = 0, and 0 : J -+ R is a 
solution of 4 + f 0 x = 0. 
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Pro06 Any V E X(c) can be written as 

v=X(Uoc)+Y(L/fox)+CZ’Pi 

with X, Y, Z’ : J + R and Pi E X(y), h(j, Pi) = 0, DPi = 0, i = 2,. . . ,n. Eqs. (2.2a) 
and (2.2b) are equivalent to IZ + 1 scalar equations 

k+(fox)Y=o, I’+(fox)X=o, 

ik + &x)niZk = 0 (2 5 k 5 n), 

which are easily solved, giving the formula for V. 0 

Two particular cases of Lemma 3.2 will appear soon. In the first case x = a (constant); in 
the second one c is a null pregeodesic. We get as solution 6’ with initial condition 0(O) = 0, 
depending on the case, the functions 

e(t) = -f(a>t, e,,,=10,(~) =log(fi). (3.1) 

having used for c null past pregeodesic that f = -f o x (Theorem 2.3). 

4. The length of certain lifts 

Letc: J + MbeacurveinMandC: J + PaliftofctoP;thusCisamoving 
frame(Cl,..., C,). We can then write 

t= c c’ci, VC~ = CfijCj, ci, fij : J --, Iw. 

With the general notation is Section 1 we have formulas 

w(C) = (f;‘), 4(C) = (c’), G(t, c) = X(&2 + x(&j)‘. 

(4.1) 

(4.2) 

We use them in the lemma below to compute the lengths of certain lifts C of curves c of 
one of the special forms considered in Section 3. L(y) will always denote the length of a 
curve y. 

Lemma 4.1. Fix (a, b) E M and let c(t) = (a - t, b), t E [0, a). Choose cl, . . . , &, in 
TbN such that h(ei, cj) = f (a)-26ij; thus (U(U, b), e1, _ . . , &) is a g-orthononnal basis 
at (a, b). Dejine C : [0, a) + P by 

co=uoc, f(a) 
Ci(t) = fca _ tjfi G > 0). 

Then C is a horizontal lift of C, G(c, c) = 1 and L(C) = a. 

Proo$ By Lemma 3.1 all Ck are parallel. With the notation in (4.1), 15 = -U o c, hence 
co = -1 and ci = 0 for i > 0 so we just apply (4.2). 0 
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Lemma 4.2. Consider c:(-t, t) + M, c(t) = (a, y(t)), where y is a D-geodesic in N 
such that h(j, j) = 1. Let C be given by 

Co(t) = ch(-f(a)t)U(c(t)) + sh (-f(a)t)(jt)(t)/f@)), 

Cl(t) = W-f(a)t)Wc(t)) + ch (-f(a)t)(j(t)/f@)), 

Cj = (l/f(a))Pi for i > 2, 

where Pi E X(y), g(j, Pi) = 0, DPi = 0, h(Pi(O), Pj(0)) = 6ij. Then, C is a horizontal 
lif of c and we have 

G(c’, c:)(t) = fW2 ch(2f(a)t) 5 2f(~z)~ ch2(f(a)t), 

Proo~I All Ci are parallel by Lemma 3.2. With an obvious matrix notation, 

In particular, since c = j, we get using notation (4.1) that all f/ = 0 and 

co(t) = f(a)sh(f(@), c’(t) = f(a) ch (f(a)t), 

cl =0 fori > 1. 

The lemma is now immediate. 0 

Lemma 4.3. Let c = (x, y) : [0, t) + M be a null maximal past pregeodesic such that 
Dj, = 0 and h(y, j) = 1. Define a lift C = (Co, . . . , C,) of c by 

Co=chQ(Uoc)+shB-& Cl =sh@(Uoc)+ch&- 
fox f ox’ 

1 
Ci = -pi, 

f OX 

where Pi E X(y), DPi = 0, h(j, P) = 0, h(Pi, Pj) = 6ij and 0 : [0, t) + R is given by 
exp(8) = i-/i(O). Then C is a horizontal lift of c and 

x (0) 

L(C) = 2/2 s 4. f (0 
o f (x(0)) 

Proo$ All Ck are parallel by Lemma 3.2. We get as in the proof of Lemma 4.2, 

lJoc=chBCo-sh8C1, $/(f o c) = -shKo + chBCI, 

i-=~(Uoc)+j=~exp8(Ca-Cr)=(k2/k(0))(Ca+Ci). 
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Using (4.2) and liml,, x(t) = 0 (see Theorem 2.2) we arrive at 

=Jz 
s 

' -f(x(f))W) dt =2/2 x'"h8 d6. 

.fMO)) s 

??

0 
o f(x(O>> 

Suppose from now onwards that there is a fixed global orthonormal positive frame on N, 
denoted by Fl, . . . , Fn. Since h(Fi, Fj) = 6ij, the fields Ei on M 

Eo = U, Ei(x, y) = f(x)-‘Fi(y) (1 I i I n) (4.3) 

are a g-orthonomal frame on M. This frame gives a section D of rc : P + M whose 
properties will be essential in this paper. 

Lemma 4.4. Let c = (x, y) : [0, t] + M be a curve. If j = c ykFk we have 

c#J (& 0 c)) = (i, (f 0 X)Y', . . . > (f 0 X)Y"L 

L(a oc) = 
s 

(-li2+(fo~~211Y112+2(fox)211Y112+ llHl12)“2dt, 
0 

where Y = (y’, . . . , y”) is identijed to a column vectol; H is the n x n matrix eji = 

h(D(Fi 0 y), (Fj 0 y)) and llHl12 = C<Hji)*. 

Proo$ We apply (4.2) once more to C = o o c. We have 

d = i(u o c) + j = k(Eo o c) + f(x) c yk(Ek o c), 

and the first formula follows. Now we apply (2.1) choosing either r = 1 and K = 0 or 
r = 0 and K = Ei o c = (f o x)-l (Fi o y). We may compute then 

V(U o c) = cp(x)jl = c f(x)ykEk and 

V(Ei o C) = q(x)f(x)*h($, Ei 0 c)(U o C) 

+D(Ei o C> + v(x)f(Ei o C) 

= f(x)y’(U 0 c) + 
1 

-D(Fi 0 Y) 
f(x) 

mfOn(Fi 0 y) + (P(x).k(Ei 0 c). 
f (x)2 

The last two summands cancel and the second and third formulas are clear. 
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5. Constructions for special N in dimension 3 

Denote by R3 and R4 the Euclidean space or the Minkowski space; (et, 122, es) and 
(eo, et, e2, es) will be the standard basis with ea = (l,O, 0, 0), assuming (eo, eo) = -1. 
Let N be either R3, S3 or W3 with its natural Riemann metric h. Here the sphere S3 is 
considered as the group of unit quaternions and W3 is the hyperbolic space. We describe 
the model of W3 to be considered. Let (., .) be the Lorentz product of lR4; then I-I3 = (x E 
[w41 (x, y) = -1, x0 > 0) and the metric h on I-U3 is the one inherited as a submanifold of 
Minkowski space. 

In each case, N has a distinguished point o = 0, 1, e0 depending on N = R3, S3 or W3. 
We construct a special orthonormal frame Fi on N. If N = R3 we pick up as Fi the parallel 
frame field such that Fi (0) = ei . In the case N = S3, we know that the Lie algebra of the 
unit quatemion group can be naturally identified to R3 (the tangent space at 1 is the set of 
pure quatemions); we choose as Fi the invariant fields on S3 induced by the ei . If N = I-U3 
we choose as Fi the geodesic frame obtained from the tangent vectors et , e2, e3 at eg. More 
precisely, given x E W3, x # eo, we write it (uniquely) as 

x = ch (8)ea + sh(@u, 8 > 0, 

(4 eo) = 0, (u, U) = 1, 

and we consider the geodesic joining ea to x, 

c, : [O, 11 + ws, en(t) = ch(ti3)eo + sh(t0)u. 

Then, we have three parallel fields & along c, given by the initial condition & (0) = e;, 
and we define E;;(x) = V,(l). If y : R + W3 is the geodesic 

y(t) = ch (t)eo + sh(t)el, 

one may check that Fl (y(t)) = y(t), Fj (y(t)) = ej for j = 2, 3. 

Lemma 5.1. Let y : R + N be the geodesic determined by the conditions y(0) = o and 
j(O) = el. Then, if v is the vectorproduct in R3. 

D(F;:oy)=O fori=1,2,3 and N=R3,W3; 

D(Ft 0 y) = 0, D(Fi o y) = (F1 V Fi) 0 y 

for i = 2.3 and N = S3. 

Proojl It is clear for N = R3 or W3 since the Fi are parallel along any curve (N = R3) or 
are parallel along geodesics starting at ec(N = W3). The analogous statement for N = .S3 
follows from the formula DxY = X v Y, X, Y invariant fields, since Jo = F1 o y. 0 

Lemma 5.2. For each b E N there is an isometry q of (N, h) such that 

q(o) = b and Tq(Fi(o)) = Fi(b) (1 5 i 5 3). 
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Pro05 For N = R3 or S3 choose q(x) = x + b(N = R3) or q(x) = bx(N = S3). If 
N = W3 write b = ch(0)eo + sh(8)u for u E e’ o,~~~=1.Define~:R4-+lR4asalinear 
map given by the conditions: 

q(x) =x if (x, eo) = (x, U) = 0, 

cp(eo) = ch (0)eo + sh (69~4, 

q(u) = sh (8)eo + ch (6))~. 

We denote by the same symbol q its restriction to an isometry of W3. Clearly, v(t) = 
ch (tQ)eo + sh (tom is a geodesic joining eo and b and the fields F;: o y are parallel. 
Consider the linear maps 

Par, Tan : Te,W3 + TbW3 

given by the parallel transport along y and the tangent of v. We only need show that Par=Tan, 
clecking it on the vector p(O) and u such that < v, p(O) >= 0. First, Tan(p(0)) = 3 (1) 
by direct check, and 3 (1) =Par(p (0)) because y is a geodesic. On the other hand, v being 
tangent at eu, < v, eu >= 0; hence, < v, u >=< v, eo >= 0. A field V along y is parallel 
if and only if the condition 0 = Vi+ < y, V > y holds. We check that, for our particular 
v. V(t) = v (constant) is parallel. It follows now that, if D is the ordinary derivative, 

Par(v) = V(1) = v = q(v) = Dq(eo)(v) = Tan(v). 0 

We study the section o of P given by the fields Ei defined by formula (4.3), after our 
choice of the frame Fi. The technical properties of CJ and an extension of c to be defined 
will be essential to understand P. 

We use Lemma (4.4) to compute the length of o o c when c has x = a (constant) and y is 
a unit-speed geodesic of N starting at o. In all cases 11 Y 11 = 1 and, if N = R3 or W3, H = 0. 

If N = S3 we will use that for invariant X, Y, we have DxY = X v Y, where v is the 
vector product. It is now easy to get that H is the matrix of the endomorphism Z + Y v Z. 
Lemma 4.4. gives 

L(o o c) = t(f(a)* + 2(f(a)2)‘/2 (N = R3 or W3), (5.1) 

L(a o c) = t(f(a)* + 2f(a)2 + 2)“* (N = !§3). (5.2) 

We extend the section u : A4 -+ P to [0, I> x N as follows. Given b E B, consider the 
curve c(t) = (a - t, b) defined on [0, a). By Lemma 4.1, c o c is a horizontal lift of c with 
length a, as we see by choosing <i = f(u)-’ Z+‘i (b) = Ei (a, b). Then o o c converges to a 
point in F that will be, by definition, a (0, b). The definition is correct because it does not 
depend on a. 

Theorem 5.1. The extension c : [0, 1) x N -+ @ is continuous. 

Prooj Only the continuity at (0, b) needs proof. Given E > 0 we will choose 6 and a 
neighborhood B of b in N such that if x 5 6 and y E B, then d(cr(0, b), o (x, y)) 5 3-s. 
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We have just pointed out that the curve ~7 (a - t, b) joins cr (a, b) to u (0, b) and has length 
a. Therefore 

d(a(a, b), cr(0, b)) 5 a for any b E N. 

We choose as B a D-geodesic ball centered at b of radius r such that 

r(f(E)* + 2(!(E)* + 2)“* I 6. 

(5.3) 

Any y E B can be written as v(t), where y : [O, t] -+ B is a D-geodesic such that 
y(O) = b and h()i, 3) = 1. Since y is unit-speed, t < r. We apply either (5.1) or (5.2) to 
the curve c(t) = (6, v(t)) and we get 

d(a(~, b), C(E, Y>) i L(a 0 c> I W(E)* + 2f(~)* + 2)“2 < E. 

With this and (5.3), it is clear that taking E = S we have, by the triangle inequality, 
d(a(0, b), a(x, y)) 5 3~ for x E [0, S) and y E B. 0 

In Minkowski space R ‘+’ choose a positive orthonormal basis ea, et, . . . , e, such that 
eu = (l,O, . . . ,O).Fori E {l,...,n}andr E Rdefinealinearmapby 

j3(eo) = ch(r)eo + Sh(r)ei, 

fi(ei) = sh(r)eo + Ch(r)ei, p(ej)ej (j # i). 

We say that /I is a boost (or i-boost, to be more precise) with parameter r. Boosts are in 
O_, the structure group of P. Analogously, choose i, j E { 1, . . . . n} and r E R, and define 
elementary rotations by 

P(ei) = COS(r)ei + sin(r)ej, 

p(ej) = - sin(r)ei + COS(r)ej, 

P&k) = ek 

for k # i, j. These rotations are also in IL. We are interested in R4. For the time being 
we will deal only with l-boosts fixing pointwise span{e2, e3) and rotations fixing pointwise 
span{eo, et }. Since they are then determined just by the parameter r, we will use the notation 
B(r) and p(r) for them. The letters /l and p will represent boosts and rotations in many 
formulas below. 

Consider c : R -+ M, c(t) = (a, y(t)), where y is the geodesic in N determined by 
y(0) = u and 3(O) = et. This curve has a lift c : R + P given by 

Co(t) = ch (-f(+)U(c(r)) + sh(--f(~)0(Y(0lf(~)), 
Cl(t) = sh(-f(@)D(c(t)) + ch (-f(0)(Y(t)lf@)), (5.4) 
Ci(t) = Ei(C(t)), i = 2,3. 

Since, p = Ft o y, y/f(u) = Et o c can be substituted in (5.4) and it is clear that C(t) = 
a(c(t)) . p(-f(u)t). If N = R3, W3, the fields Pi = Fi o y are parallel along y. Therefore, 
C is in this case just the horizontal curve in Lemma 4.2 and we have the bound 

21/2 
L (Cll-VI) 5 --&h(f(a)r). (5.5) 
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However, if N = s3, C is not horizontal. We compute G(c’, I$ with formulas (4.2). Indeed, 
with the ideas in the proof of Lemma 4.2 we get 

co(r) = f(aM(f(@), c’(t) = f(a)ch(f(@), 

ci =Ofori > 1. 

Also Co and Cl are V-parallel by Lemma 4.2. Finally, by formula (2.1) we have VC2 = C3, 
VC3 = -C2. We have shown that all &j are 0 except f. = -f: = 1. Therefore 

G(c’, c:)(t) = f (a)2ch(2f(u)t) + 2 F 2f (u>2ch2(f(u)t) + 2, 

(5.6) 

Theorem 5.2. Ifs is an i-boost, a(0, b) . #3 = ~(0, b)for d b E N. 

Proojf We prove it for l-boosts, the other cases being analogous. 
We claim it is enough to prove the theorem for b = o. Choose an isometry (o of N 

as in Lemma 5.2 and denote by @ the isometry of M given by @ (x, y) = (x , q(y)). 
Clearly @ has a lift @# to the frame bundle P, which is an isometry of the metric G. This 
implies that @# can be extended to the completion i of P. It can also be checked that 
the left action of the isometry group of M on P or P commutes with the right action of 
the structure group IL, therefore @# . u . h for u E P and h E IL is unambigous. We have 
then 

o(O, b) . B = a@, q(o)) . B = (@#. 064 0)) . B = @#. (a(O, 0) . B> 
= @#. a(0, o) = (~(0, q(o)) = ~(0, b). 

We deal now with the case b = o. Suppose the l-boost is #l = B(r). Consider for 
each a E I the curve C, depending on a, given in (5.4); it will be denoted by C,. Write 
r = -f(u)T(u) and t(u) = lT(u)l. Clearly, C, joins a@, b) to a@, y(T(a) . #l(r), and 
by (5.5) and (5.6) 

d(o(a, b), (~(a, yV@)) . B) 5 L (Cl,-s(aj,r(a)l) 

243 
< -sh(lrl) +2&%(u). 
- co(u) 

By the hypothesis on f, as a + 0, q(u) + 00 and T(a) + 0; therefore the right-hand side 
converges to 0 as a + 0. By the continuity of d and o we get d(u(0, b), (T (0, b) . fi) = 0. 

0 

Theorem 5.3. For any b E N and h E IL, CT (0, b) . h = a(0, b). 

ProoJ: It is proved in [5] that the action of the structure group on P is continuous. Therefore, 
the stabilizer S of o (0, b) is a closed subgroup; in fact, by the Cartan-von Neumann theorem, 
a Lie subgroup of [L. By Theorem 5.2, S contains the three l-parameter subgroups t -+ B(t) 
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induced by the boosts; hence the Lie algebra of S contains the three matrices #j (0). However, 
it is known [6, III.21 that these three matrices span (as a Lie algebra) the Lie algebra of IL. 
By the bijective correspondence between connected Lie subgroups and Lie subalgebras, we 
get that the connected component of S is just I_, and S = [L. 0 

Let c = (x, y) : [0, t) -+ M be a maximal past null pregeodesic, y being a D-geodesic 
such that y(0) = o and y = Ft o y. Consider the curve 

c = (Co, Cl, c2, C3) : [O, t> + p 

Co = che(U o c) + shQ/f ox), 

Cl = shB(U o c) + chf?(y/f ox), 

Ci=(l/fox)Pi, i =2,3, 

where 8 : [0, t) + R is given by exp(8) = i/k(O) and Pi E X(y) is D-parallel such 
that Pi(O) = Fi o y(O), i = 2,3. By Lemmas 3.2 and 4.3, C is a horizontal curve. We 
give in (5.7) and (5.8) an alternative expression for C. First the cases N = R3 or W3. Since 
Pi = Fi oyandy/(Fox) =Er ocwehave 

C(t) = (cr o c(t)) . fi(Q(t)), t E [0, t) (N = R3, W3). (5.7) 

To answer the case N = S3, the reader will prove first an easy lemma. 

Lemma 5.3. Let X, Y be invariantjelds in S3 such that h(X, X) = 1, h(X, Y) = 0, and 
let y be an integral curve of X. Then 

P(t) = cos(t)Y(y(t)) + sin(t>(Y v X)(Y(t)) 

is the parallel$eld along y such that P (0) = Y (y (0)). 0 

We get now that 

C(t) = (a 0 c(t)) * j3(e(t))p(t), t E [O, t) (N = s3>. (5.8) 

Theorem 5.4. Let c = (x, y) : [0, t) + M be a maximal null past pregeodesic, y being 
a unit-speed geodesic in N. If C : [0, t) + P is a horizontal lift of c such that Co(O) = 
U(c(O)), we have that 

lim (d(C(t), 64 y(O)>) = 0. t-r 

Proofi We claim that it is enough to deal with the case where y(0) = o. If y* : [O, r) + N 
is any unit-speed D-geodesic, y*(O) = b, we take the isometry q of N as in Lemma 5.2 
and then @(x1 y) = (x, p(y)), which is an isometry of M. We define the geodesic y by 
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Y* = v o y and c by c* = @ o c. The lift @# of 0 to P, which is an isometry, verifies 
C” = @#oCand 

d(C*w, a@, Y*(t))> =d(@# 0 C(t), cJ(O, (0 0 y(t))) 

= d(@# 0 C(t), @# 0 ~(0, y(t)>) = d(C(t), a@, y(t))), 

proving our claim. 
Suppose then, y(0) = o. We also say that we do not lose generality if we assume that 

C(0) = a(c(0)). If this is not the case, we may choose A E SO(3) such that C’ = C . A 
verifies the hypothesis and C’(0) = u (c(O)). Since the right translation by A is an isometry 
of P and p we may write 

d(C’(t), a@, y(t))) = d(C(t) . A, a@, y(t))> 

= d(C(t), ~(0, y(t) . A-‘)). 

By Theorem 5.3, ~(0, y(t)) . A-’ = ~(0, y(t)); so if the left-hand side converges to 0 so 
does the right-hand side. 

Let us tackle the case C(0) = a(c(O)), which corresponds to C given by (5.7) or (5.8), 
and it is the only curve to be studied. For each t E [0, t) define 

yr : LO, x(t)1 + M, ?4(s) = (x(t) -St y(t)). 

(Notice that s is the parameter of yt , f, and At soon to be defined.) Let r, be its horizontal 
lift with initial condition r, (0) = c (c(t)). By Lemma 4.1 we have r’ = (T o yr . The curves 
(where j5l and p denote boosts and rotations) 

A,=r,+fi(0(t)) ifN=lR3,W3, and 

Al = r, . /?(f3(t))p(t) if N = s3, 

are also horizontal, with domain [O, x(t)], and A,(O) = C(t). To compute its length we 
write first 

G(d,, 6,)“2 = Il@(&)ll = IIB(-~(~))@(~))lI~ 

because p(t) preserves norms (p only appears if C is as in (5.8)). It is easy to check that 
@(i;) = (-l,O,. . . ,O), hence G(&, &)‘I2 I 2 ch (e(t)). The inequalities k < 0 and 
f > 0 give jt = -(f o x)k > 0 (see Theorem 2.3), thus i is increasing. By the definition 
of 8 in (3.1) 

i(t) G(&, 6,)“2 5 2- = 2 f(x(t)) - 
k(O) fcm) 

and 

L(b) f 2fixW. 
X 
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therefore L(A,) + 0 as t + t. The curve At starts at C(t) and converges to ~(0, y(t)) . 
h(t), h(t) = p(O(t)) or B(Q(t))p(t). By Theorem 5.3, ~(0, y(t)) . h(t) = ~(0, y(t)), so 

d(C(t), o(0, ~0)) i L(4) + 0. 0 

6. The singularities of the Friedmann model 

We are interested in the maximal increasing solutions of the Friedmann equation such 
that limt-+u f(t) = 0. We get them for C = fl in the following lemmas. 

Lemma 6.1. Let f : (0,l) + [w be a maximal solution of (f2 + 1) f = 2k, k > 0, such 
that 0 < f < 2k, f > 0 and lim*,u f(t) = 0. Then 1 = kn and the graph off is 
parameterized by 

x(h) = k(h - sink), y(A) = k(1 -cash), k E (0, n), 

that is, for each k., y(h) = f (x(k)). 0 

Lemma 6.2. Let f : (0,l) + R’ be the maximal solution of (f2 - 1) f = 2k, k > 0, such 
that f > 0, f > 0, and limt+u f(t) = 0. Then the graph off isparameterized by 

x(k) = k(sh - h), y(h) = k(chh - I), h > 0; 

that is, for each h > 0, y(h) = f (x(A)). 0 

We also have for C = 0 the equation f2 f = 2k. To get the simplest f we take k = $ and 
then f(t) = t 2/3 t E (0, 00). In the cases C = f 1 we take k = 1. We will then study the , 
Friedmann spaces M = (0,l) x N where f : (0,l) + R is the strictly increasing function 
defined by 

f : (0, 00) + R, f(t) = t2/3 if N = R3, (6.la) 

f : (0, n) + R, f (A - sin A) = 1 - cash if N = S3, (6. lb) 

f : (0,~) + R, f (sh h - h) = ch h - 1 if N = W3. (6.1~) 

If N = R3 or W3, f gives the “full” Friedman model; if N = .S3, f only gives the “left 
half” of the closed Friedmann model. These spaces will be studied in Theorems 6.1-6.3. 
We deal with the full closed model in Theorem 6.4. 

Clearly, in the last two cases, 

We define for the functions f, 

(6.2) 

G : [O, 1) + R, G(t) = ’ dt s - 
f(C)’ 

0 
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Eq. (6.2) can be rewritten as h = G(x(h)) in cases (6.lb) and (6.1~). In case (6.la) we have 
G(t) = 3t1/3. 

Lemma 6.3. For all E, s > 0 there is a sequence (al, . . . , ak) in Z = (0, I), such that 
Ca, < Eand~G(a,) =s. 

Proofi It is enough to show that there is an infinite sequence CX,, n > 1, in I such that 
C a, < E, C G(clln) > s. Indeed, if it exists, define a0 = 0 and let k >_ 1 be such that 
Cnck G(a,) < s 5 Cnik G(a,). If we define a,, = CX, for n < k and ak by the condition - 
Cnck G(ak) = s, the conclusion of the lemma holds. 

To show the existence of the an for f(x) = x2/3 we define CX~ = (~/n)~, with a suitably 
chosen c to get C (II, < E. (One uses essentially that x(1/n) is divergent and C(l/n3) is 
convergent). 

If f is as in Lemmas 6.1 or 6.2 we define on = x(c/n), where c a positive constant. The 
divergence of c( l/n) and (6.2) give c G(cx~) = co. We study c an. If f is as in Lemma 
6.1, note that t -sin(t) is an alternating series; therefore we may bound t -sin(t) 5 t3/3! and 

for a suitable choice of c. If f is as in Lemma 6.2, we have for h = sh( 1) - 1 and t 5 1 that 

Therefore, for c I 1, 

Can = cx(c/n, i (c3h> ~(l/n33 < e 

for a suitable choice of c. 0 

We use Theorem 2.3. For a E (0, I) let xa be the maximal solution of i = -f(x) with 
xa (0) = a; it is defined on the interval [O, G(a)). Let y : R + N be a unit-speed geodesic 
with y(0) = o = 0, 1, ec and y(s) = b, s > 0. For each r E [0, s] we consider the geodesics 
y,“(t) = y(r + wt), w = fl. The curves 

C Kr = (x,, Y:> : LO, G(a)) + M, w = +I, 

are the maximal null past pregeodesics starting at (a, yp (0)) = (a, y(r)). Denote by Czr its 
horizontal lifts such that C& (0) = e (a, y(r)). If we join these two curves we get a broken 
curve Q(a,r). By theorem 5.4 its endpoints are ~(0, y,“(G(a))) = ~(0, y(r + wG(a))), 
w = &l, and by Lemma 4.3, 

d(a(O, yt(G(a))), ~(0, Y’(G(a)))) 

(6.3) 

because f is a strictly increasing function. 
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Theorem 6.1. The set o ({0} x N) has just one point. 

193 

Proo$ It is enough to show that for any b E N and E > 0 there exists a broken curve 
joining ~7 (0, o) to cr (0, b) with length less than E. We may write b = y(s), s > 0, for some 
unit-speed D-geodesic such that y(0) = o, and we choose a sequence a,, n = 1, . . . , k as 
in Lemma 6.3 such that 

2CG(a,) = s, 4xa, < c. 

We define a0 = 0 and r,, = 2G(ao) + . . f + 2G(a,_l) + G(a,), n = I,, . . , k. We have 
then k curves in the form Qa,r, for a = a, and r = r,; these curves will be denoted 
by Qn. If we join the curves Qn we have a broken curve with endpoints ~(0, y(0)) and 
~(0, y(2 c G(a,))) = ~(0, y(s)); this curve has length 5 4 c a, < E according to (6.3).0 

The only point in a({O} x N) C @ - P will be denoted by p and s = n(p) will be called 
the essential past singularity. 

It is well known [6] that any h in IL can be factorized as h = @a, with p, ~7 E SO(3) 
and /I a l-boost. If r is the parameter of /3, it may be characterized as the hyperbolic angle 
betweeneandh(e),e=(l,O,... , 0), so it is independent of the factorization. 

Theorem 6.2. For (a, b) E M and h E I_ with parameter r we have 

d(o(a, b) * L., p) 5 &aexp(-lrl). 

Pro05 Consider a factorization h = ,~/?a as above; let s = sign(r) = fl and define 

(u l, v2, v3) E R3 by p(-l,s,O,O) = (-1, vl, v2, v3). Clearly C(V’)~ = 1, hence the 
vector~=-U(a,b)+Cv’Ei(a,b)isanullvector.Letc=(x,y):[O,t)~Mbethe 
maximal null past geodesic such that c(0) = (a, b). Define C as its horizontal lift such that 
C(0) = a(a, b) = (U(a, b), Ei(a, b)). The curve K = C . h is also horizontal, and it is 
well known that the horizontal lift K of a geodesic verifies 4(k) is constant, 4 being the 
fundamental form. Therefore. 

4(B) =c#J(zc(0)) = r’(c#@(o)) = (@a>-+1, I+, v2, v3) 

=o -‘p-‘(-1, -s, 0,O). 

It is very easy to check that 

(Siz 1::) (i) = exp(scr)(:) fors = fl. 

It follows from this and formula (2.7) that 

G(k’, R)‘12 = Il4(ftW)II = JZexp(-sr), 

L(K) = hexp(-sr)t = hexp(-sr) 
a fO)dt s ~ 

f(a) 
I hexp(-sr), 

0 
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since f is an increasing function, Finally, K converges to ~(0, y(r)) . h (see Theorem 5.4). 
By Theorem 6.1, this point is just p, hence 

d(a(a, b) . h, p) 5 L(K) 5 &a exp(-sr). 

Theorem 6.3. Let (M, g) be the Friedmann space dejned by f as in (6.Ia)-(6.lc). The 
only neighborhood of the essential singularity s is the full b-completion A?; therefore any 
curve in M coverges to s. 

Proof Let W be a neighborhood of s in A? and (a, b) E M. Clearly ,-’ (W) is a neigh- 
borhood of p, hence there is a ball B centered at p with radius E such that B s n-l (W). 
For any (a, b) E M, we may choose a boost fi with parameter r such that, by Theorem 6.2, 
d(a(a, b) . h, p) 5 &aexp(-It-l) 5 E. We have then that B intersects n-‘(a, b), hence 
(a, b) E n(B) s W. I3 

In the “full” Friedmann model, f is a maximal solution of the Friedmann equation 
(f* + 1) f = 2, which is defined on (0,2n). Since f is symmetric with axis x = n, we 
can perform “symmetric” constructions getting two open submanifolds MO and Ml given 
by x < n and x > n and x > I-C with frame bundles PO and PI, sections go and ISI and 
points po E PO and p1 E PI which are the image of oo({O) x s3) . IL and ~t({2nk} x s3 . [L. 

Theorem 6.4. With thepreceeding notation, we have po = p1 in P; therefore the essential 
singularities SO and s1 are the same point s. This is the only singularity of the closed 
Friedmann model and the only neighborhood of s is the full b-completion A?. 

Proof We show that for any E > 0 we have d(po, PI) < 3~. Choose r > 0 such that 
fik exp(-r) < E. Let j3 be a boost with parameter r. The map 0 . B : M + P is 
continuous and there is 6 > 0 such that, for 1 the unit in s3, 

d(a(nk - 6,l) . /Y, a(nk + 6,l) . /3) < E. 

Wehavethen,forq+=a(nkfA,l).B, 

d(po, PI> I d(po> q-1 + G-t q+) + d(q+, PI> < 3~9 

using once more Theorem 6.2. 
Once we know that p = pl = ~2, we have, by application of Theorem 6.2 and its dual 

version to MO and Ml, the inequalities for 0 < a < n, 

d(cT(a, b) .A, PI I haexp(-lrl>, 0 

d(a(n + a, b) . h, p) i z/Z(n - a) exp(-It-l). 

By continuity, 

d(a(a, b) . A, P> i &IT exp(-lrl) 
for all (a, b) E M = (0,2z) x S3. (6.4) 

With this, one may prove that s has just one neighborhood as in Theorem 6.3. 
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Let us finally prove that s is the only singularity. As we said in Section 1, all singularities 
are induced by b-incomplete curves so, we only need show that if c = (x, y) : [0, 1) + M 
is a b-incomplete curve there is a horizontal lift C of c converging to p. Since L(C) < 00, 
it is enough to show that for some sequence tn + 1, C(t,) --f p. The reason is that for any 
pair of sequences s,, and sk with limit 1, C(s,) and C(sA) are equivalent Cauchy sequences. 

Choose a sequence tn --+ 1 such that c(tn) + z E [0,2x] x s3. Write C = (a oc) .h for 
h : [0, 1) -_, L and let r, be the parameter of A(&). Choosing subsequences if necessary we 
may assume that either (a) Ir, 1 -+ cm, or(b) Ir, 1 5 H for all n. If (a) holds, (6.4) implies that 

d(C(t,), P) I 22/2x exp(-lml) + 0. 

The section u = (Ec, Et, E2, Es) = (0,2n) x s3 + P can be continuously extended to 
a map, still denoted by the same symbol, o : [0,2x] x s3 + k, such that ~(a, b) = p 
if a = 0,2n. By the continuity of o, (a o c)(t,) + p E j. If(b) holds, by compactness, 
taking again subsequences if necessary, we may assume that h, -+ k E [L. Therefore, C(t,) 
converges to p . h, which is just p by Theorem 5.3 and its (unwritten) “symmetric” version. 

We return to the nonclosed Friedmann model. Is there another singularity besides the 
essential singularity s? We cannot answer. As we said in Section 1, all singularities are 
obtainable as projections of endpoints of horizontal lifts of b-incomplete curves. We show 
at least that future causal geodesics are not b-incomplete. At any rate it seems difficult to 
get a physical interpretation for singularities s’ # s. 

Lemma 6.4. Let c = (x, y) : [0, t) + M be a maximalfuture causal geodesic. Then x is 
not bounded. 

Proo$ By causality, -k2 + (f o x)2h(p, 9) 5 0; hence conditions R, f > 0 give 

h(j, j~)“~ 5 -+ 
fox 
t x(t) 

Lb(Y) i lim s i(u) du ___ = lim 
r+r o f 0 x(u) 

If the increasing function x were bounded, it would have a limit; then Lb(y) < 00 and y 
would converge too for N is complete. Then c is not maximal. 0 

Theorem 6.5. Maximalfuture causal geodesics in the nonclosed Friedmann spaces con- 
sidered are not b-incomplete for its horizontal lifs have infinite length. 

Proo$ Let c be an integral curve of U; i.e. c(t) = (a + t, b), 0 < t < CCL We may prove 
as we did in Lemma 4.1 that the curve C = (Co, . . . , C3) given by 

CO=UOC, Ci(t)=a 1, 
ff(++ a 
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where& E TbNandh(ti,(j) = f(a)-26ij,isahorizontalliftofcandG(~,~) = l.Since 
C is defined on a nonbounded interval, L(C) = 00. 

Suppose now that c = (x, y) : [0, t) --+ M is a causal future geodesic, but not an integral 
curve of U. Then j(t) # 0 for all t and we may reparameterize y to a unit-speed curve 
y ; y = y or. By (2.3b), y is actually a unit-speed geodesic. Since length and horizontal lifts 
are invariant under reparameterization, we only need to show that if c = (x, y) : [0, t) + 
A4 is a causal future pregeodesic there is a horizontal lift C with infinite length. We use that 
x(t) + 00 as t + t (Lemma 6.4) and that y is a unit-speed geodesic. 

We define C with the help of Lemma 3.2. Indeed, by suitable choices of X0, Yu and P 

we have that the fields along c 

Co = ch0(U o c) + sh (@(j/f o x), 

CI = shB(U o c) + ch (@(j/f ox), 

Ci = pi/(f O X)3 i = 2,3, Pi E X(y), 

h(j, Pi)=0 and DPi =O 

are parallel provided that 4 + fox = 0. We choose 8 with 6’(O) = 0; then, f being positive, 
we have 0 I 0. We easily get 

Uoc=cheCo-shec], j/(f 0 x) = -shBCo + ch8C1; 
d=,qUoc)+ji=[iche-(fox)she]Co+[-kshe+(fox)chelC1; 

G(c, c) = rich8 - (f o x)she12 + [-xsh6’ + (f 0 x)ch@12 

= (x2 + (f 0 x)2ch (28) - 21i(f 0 x)sh (28). 

After the substitution 8 = -]e] and ch (2181) 2 sh(2]0]) we obtain 

G(c’, t) > (i + f o x)2sh (2101). 

Clearly (d/ dt) 10 ] = -8 = f o x > 0; then there are numbers r, S > 0 such that if t > r, 

sh (I20(t)I) > S. We arrive at 

L(C) 2 UCI[r,,l) > S s k(t) dt = S(x(r) -x(t)). 
r 

If L(C) were finite, x would be bounded. Contradiction. 

Acknowledgements 

The first author was supported by Proyecto de Investigacidn Complutense number PR156/97- 
17104. 



A.M. Amores, M. GutiCrrez/.Iournal of Geometry and Physics 29 (1999) 177-197 197 

References 

[l] B. Bosshard, On the b-boundary of the closed Friedmann model, Commun. Math. Phys. 46 (1976) 
263-268. 

[2] D. Canarutto, An introduction to the geometry of singularities in general relatively, Riv. Nuovo Cimento 
11 (3) (1988) l-60. 

[3] C.T.J. Dodson, Spacetime edge geometry, Int. J. Theoret. Phys. 17 (6) (1978) 389-504. 
[4] SW. Hawking, G.F.R. Ellis, The Large-Scale Structure of Spacetime, University Press, Cambridge, 1973. 
[5] R.A. Johnson, The bundle boundary in some special cases, .I. Math. Phys. 18 (5) (1977) 898-902. 
[6] M.A. Naimark, Les representations lineaires du groupe de Lorentz, Dunod, Paris, 1962. 
[7] B. O’Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, 

1982. 
[S] B.G. Schmidt, A new definition of singular points in general relativity, Gen. Rel. Grav. 1 (3) (1971) 

269-280. 


